Без ответов

Умножение многозначных чисел на многозначные

Умножение многозначных чисел на многозначные происходит таким же образом, как и умножение многозначных на однозначные. Каждая цифра многозначного числа умножается на каждую цифру другого многозначного числа. Единственное отличие заключается в том, что в конце образуется своего рода лесенка ответов, которые надо сложить. Рассмотрим несколько примеров, чтобы хорошо понять это.

Пример 1. Найти значение выражения 12 × 14

Записываем данное выражение в столбик — единицы под единицами, десятки десятками:

Теперь умножаем каждую цифру числа 12 на каждую цифру числа 14. Делать это надо по-очереди, начав с четвёрки. В результате таких действий мы приходим к умножению многозначного числа на однозначное, которое проходили ранее:

Умножив 12 на 4, мы получили число 48, которое записали таким образом, чтобы разряд единиц этого числа оказался под четверкой, на которую мы умножали число 12.

Теперь умножаем 12 на 1:

Умножив 12 на 1 мы получили число 12 и записали его таким образом, чтобы разряд единиц этого числа оказался под единицей, на которую мы умножали число 12.

Мы получили лесенку ответов 48 и 12, которую надо сложить. Складываем и получаем ответ 168

В данном примере множитель 14 это четыре единицы и один десяток. Тогда умножение 12 на 14 можно понимать как увеличение числа 12 в четыре раза и в десять раз. Этим и объясняется появление лесенки в конце решения. Давайте посмотрим как это выглядит на каждом этапе:

Увеличим число 12 в четыре раза, получим число 48

Увеличим число 12 в десять раз, получим число 120. Записываем 120 так, чтобы можно было сложить единицы этого числа с единицами числа 48, а десятки числа 120 можно было сложить с десятками числа 48

Теперь сложим получившуюся лесенку ответов. Единицы сложим с единицами, десятки с десятками, сотни с сотнями. В результате образуется окончательный ответ:

Но чаще всего множитель не группируется с помощью разрядов, и умножение выполняют, умножая каждую цифру множимого на каждую цифру множителя.

Пример 2. Найти значение выражения 25 × 36

Записываем данное выражение в столбик

Умножаем каждую цифру числа 25 на каждую цифру числа 36.

Умножим 25 на 6:

Умножаем 25 на 3:

Теперь сложим получившуюся лесенку:

Получили ответ 900.

Рассмотрим большой и сложный пример на умножение: 12305 × 5641. Будем придерживаться ранее изученных правил.

Сначала записываем в столбик данное выражение

Теперь начинаем умножать. Число 12305 надо умножить на каждую цифру числа 5641.

Умножив 12305 на 1, мы получили 12305 и записали это число так, чтобы разряд единиц этого числа оказался под единицей, на которую мы умножили 12305.

Теперь умножаем 12305 на следующую цифру 4:

Умножив 12305 на 4, мы получили 49220 и записали это число так, чтобы разряд единиц этого числа оказался под четверкой, на которую умножали 12305.

Умножаем 12305 на следующую цифру 6:

Умножив 12305 на 6, мы получили 73830 и записали это число так, чтобы разряд единиц этого числа оказался под шестёркой, на которую мы умножали 12305.

Теперь умножаем 12305 на последнюю цифру 5:

Умножив 12305 на 5, мы получили 61525 и записали это число так, чтобы разряд единиц этого числа оказался под пятёркой, на которую умножали 12305.

В результате мы получили большую лесенку, которую надо сложить. Складываем:

Получили окончательный ответ 69412505.

Если вы поняли этот пример, то можно сказать, что умножение больших чисел вы усвоили на отлично.

На этом урок по умножению можно завершить. Обязательно потренируйтесь, решив несколько примеров, которые даны ниже.

Важно отметить, что все эти стрелки и подробные решения, как на картинках в «боевых условиях» рисовать не принято. Нужно уметь сразу записывать ответы, выполняя в уме все вычисления

Исключением является то, если человек давно не занимался математикой или никогда ею не занимался. В таком случае можно рисовать для себя стрелки и другие вспомогательные схемы для хорошего усвоения материала.

Умножение чисел, которые оканчиваются нулями

Если оба числа оканчиваются нулями, то нужно перемнóжить те цифры, которые нулями не являются, затем к полученному результату дописáть все нули из обоих чисел.

Например, умнóжим 20 на 30.

20 × 30

Видим, что оба числá содержат по нулю. Сначала перемнóжим те цифры, которые нулями не являются. Это цифры 2 и 3. Два умножить на три будет шесть:

20 × 30 = 6

Теперь к полученному результату, то есть к числу 6 дописываем все нули из обоих чисел. В числе 20 один ноль, в числе 30 также один ноль. Итого два нуля. Дописываем два нуля к числу 6

20 × 30 = 600

Пример 2. Умножить 40 на 300

Сначала перемнóжим те цифры, которые нулями не являются. Это цифры 4 и 3. Четыре умножить на три будет двенадцать:

40 × 300 = 12

Теперь к полученному результату, то есть к числу 12 дописываем все нули из обоих чисел. В числе 40 один ноль, в числе 300 — два нуля. Итого три нуля. Дописываем три нуля к числу 12

40 × 300 = 12000

Пример 3. Умножить 600 на 3000

Сначала перемнóжим те цифры, которые нулями не являются. Это цифры 6 и 3. Шесть умножить на три будет восемнадцать:

600 × 3000 = 18

Теперь к полученному результату, то есть к числу 18 дописываем все нули из обоих чисел. В числе 600 два нуля, в числе 3000 — три нуля. Итого пять нулей. Дописываем пять нулей к числу 18

600 × 3000 = 1800000

Ваша помощь ребенку в изучении таблицы умножения

Для продуктивного изучения таблицы умножения, подходить к домашнему уроку следует поэтапно:

  • подготовка;
  • рассмотрение порядка умножения;
  • запоминание с помощью игр и наглядных примеров;
  • повторение пройденного материала.

Одни дети легко запоминают новый материал с помощью механической памяти. В возрасте 7-9 лет у большинства младших школьников она развита довольно хорошо. Другая категория детей воспринимают поступающую к ним информацию через зрительные каналы. Таблицу им будет легче запомнить с использованием дополнительных наглядных средств.

Обучая ребенка, делайте упор на его сильные стороны.

Продемонстрировать и объяснить ребенку наглядно принцип умножения помогут:

  • разрезные карточки;
  • плакаты;
  • иллюстрации;
  • счетные палочки, фигурки;
  • карандаши и фломастеры;
  • песни и стихотворения;
  • обучающие мультики;
  • аудиодиски;
  • детские пальчики.

Превращаем 100 примеров в 36

Таблица умножения на обратной стороне большинства тетрадок выглядит так:

На то, чтобы её выучить, может уйти целое лето. Понятно, что механическое заучивание правильных ответов к сотне примеров — самый трудоёмкий способ запомнить результаты умножения чисел до 10 друг на друга.

Процесс в разы ускоряется, когда мы показываем, как все эти 100 сочетаний можно сократить до 36. В этом деле куда более удачным наглядным пособием служит таблица Пифагора:

На её примере уже можно показать принципы умножения через площади небольших прямоугольников:

• 3 * 5 = 15, потому что в прямоугольник со сторонами длиной 3 и 5 клеточек помещается 15 маленьких квадратиков (считаем их вместе, чтобы убедиться).

• 5 * 3 = 15 по той же причине (считаем вместе).

Здесь же наглядно демонстрируем свойство коммутативности: от перестановки мест множителей произведение не меняется. Разумеется, название этого свойства лучше придержать до Хеллоуина, чтобы не пугать никого раньше времени

Из-за этого таблица Пифагора симметрична относительно своей диагонали, поэтому из 100 примеров для запоминания остаётся уже 55: сама диагональ с значениями 1, 4, 9, …, 100 и всё, что находится выше или ниже.

Это открытие можно сделать самостоятельно, заполнив часть пустой таблицы Пифагора, в которой изначально отмечены только множители:

Ребёнок может начать заполнять её, даже если ещё не знает правил умножения — складывать ведь он уже умеет, поэтому без труда посчитает сначала 2 + 2, потом 4 + 2, потом 6 + 2, и так, вплоть до 20. Потом ряд с тройками, и так далее.

Заполнив только часть таблицы (например, квадрат 6 * 6 клеток), уже можно увидеть одинаковые числа и понять, что зубрить её целиком совсем не нужно.

После этого на той же таблице Пифагора демонстрируем два принципа, позволяющие «автоматизировать» ещё 19 операций на умножение: умножение на 1 и умножение на 10:

• Если число умножить на единицу, оно никак не меняется.

• Если число умножить на 10, у него появляется ноль на конце.

Отнимаем от оставшихся ранее 55 примеров на умножение ещё 19 «автоматизированных» и получаем всего 36 сочетаний, которые нужно запомнить. Почти втрое меньше, чем предлагают нам на обложках тетрадок!

Уже легче, не так ли?

Вместо заключения

Уделяйте математике достаточно внимания уже с начальной школы. Этот предмет не только тренируем мозг в устном счете, но и умении логически мыслить, развивать смекалку. Постепенно привыкая к выполнению дополнительных и основных заданий, ребенок учится учиться, выполнять требования учителя, грамотно планировать свое время, распределять время для учебы и досуга.

Математические задания для третьеклассников моно составлять самостоятельно по приведенным нами аналогии, это не составит особого труда. Зато ваш ученик сможет больше тренироваться в математике, выполнять задания на каникулах и выходных, а также заниматься дополнительно после школы.

Однозначные и многозначные числа

Для начала введём два новых понятия: однознáчные и многознáчные числа.

Однознáчным называется число, которое состоит из одной цифры. Например, следующие числа являются однознáчными:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Слово «однознáчные» говорит само за себя. Однознáчное — значит состоит из одного знака (цифру иногда называют знáком).

Многознáчным называется число, которое состоит из двух и более цифр. Например, следующие цифры являются многознáчными:

10, 11, 15, 255, 350, 1000, 12500

Многознáчных чисел бесконечно много. Их не сосчитать. Кроме того, они подразделяются на следующие виды:

  • двузнáчные, которые состоят из двух цифр (например, 25);
  • трёхзнáчные, которые состоят из трёх цифр (например, 563);
  • четырёхзнáчные, которые состоят из четырёх цифр (например, 1400)

и так далее, в зависимости от того сколько цифр в числе.

Способы быстро выучить таблицу умножения ребенку

Чтобы помочь ребенку быстро выучить таблицу умножения можно разбить «зубрежку» на несколько этапов и, желательно, не грузить свое чадо всей таблицей умножения в один день, а придумать то что будет мотивировать ребенка.

Немного творчества

Для начала вооружитесь цветными фломастерами и листом бумаги. Напишите таблицу умножения и красиво оформите вместе с ребенком ваш учебный материал

Очень важно быть позитивно настроенными, а не садиться за стол с упреками вроде «все уже давно знаю таблицу умножения, а ты…!». Это заранее отобьет желание учиться у ребенка

Не пугайте школьника тем, что быстро выучить таблицу умножения – это сложно. Наоборот – скажите, что это легко, и вы обязательно поможете ребенку в этом деле.

Умножение на единицу

Теперь на другом листе напишите в столбик примеры умножения на единицу без решения. Объясните, что умножая на один, мы получаем то же число, которое умножаем. Предложите ребенку дописать решения. После этого в таблице умножения можно отметить все примеры с умножением на единицу, чтобы ребенок видел, что процесс идет.

Теперь напишите те же примеры, только наоборот, то есть не 1*2, а 2*1, 3*1

Важно, чтобы ребенок понял, что смысл один

Умножаем на десять

Когда разберетесь с умножением на единицу, то же самое проделайте с примерами умножения на десять. Объясните, что, при умножении на десять достаточно основываться на опыт умножения на единицу и дописать ноль. Не забудьте отметить в таблице умножения усвоенные примеры.

Умножение на два и четыре

Следующим этапом будет умножение на два. Если необходимо ребенку быстро выучить таблицу умножения, значит, счет уже изучен. Объясните ребенку, что при умножении на два достаточно к числу, которое умножаем на два прибавить то же число. Теперь расскажите, что при умножение на 4 необходимо основываться на опыте умножения на 2, то есть прибавить к умножаемому числу то же число и повторить эту манипуляцию.

Умножение на девять

Чтобы помочь ребенку быстро выучить таблицу умножения, расскажите, что при умножении на девять достаточно умножить на десять, то есть дописать ноль, и отнять то же число. А именно, чтобы 5 умножить 9, можно 5 умножить на 10, получится 50, и от этого числа отнять 5, получаем 45.

Не забывайте постоянно отмечать в таблице умножения примеры умножения, которые ребенку уже понятны. Каждое занятие начинайте с повторения уже пройденного материала для закрепления.

Как умножать на три и шесть

Что же, половина пути позади, однако у нас остались неразобранные примеры, такие как, умножение на 3, 6, 7, 8. С тройкой можно поступить по типу умножения на 9, только умножать будем на два и прибавлять умножаемое число. Для умножения на 6 достаточно вспомнить, как умножать на 3 и прибавить то же число.

Умножаем на семь и восемь

А вот как ребенку быстро выучить таблицу умножения с числами  7, 8? С восьмеркой поступим так же, как с четверкой и прибавим к получившемуся числу то же число. Итак, осталась одна семерка, но все примеры умножения на 7 мы уже разбирали, когда учили умножение на 1,2,3,4,5,6,8,9 и 10. Теперь основная задача – доведение до автоматизма.

Для того, чтобы тренировать память ребенка в конце занятий можно пользоваться карточками, которые необходимо приготовить заранее. На одной стороне карточки напишите пример без решения, на другой – ответ.

Ах да, не забывайте постоянно хвалить ребенка за успехи!

Учить таблицу умножения – игра

Попробуйте нашу обучающую электронную игру. Используя её, вы уже завтра сможете решать математические задачи в классе у доски без ответов, не прибегая к табличке, чтобы умножить числа. Стоит только начать играть, и уже минут через 40 будет отличный результат. А для закрепления результата тренируйтесь несколько раз, не забывая о перерывах. В идеале – каждый день (сохраните страницу, чтобы не потерять). Игровая форма тренажера подходит как для мальчиков, так и для девочек.

Таблица умножения – таблица, где строки и столбцы озаглавлены множителями (1, 2, 3, 4, 5…), а ячейки таблицы содержат их произведение. Применяется таблица для обучения умножению. Здесь есть игра и картинка для печати.

Умножение двух многозначных чисел

Если оба множителя — многозначные натуральные числа, нужно действовать следующим образом.

Рассмотрим пример 207 * 8063:

  1. Сначала запишем наибольшее 8063, затем наименьшее 207. Нужно разместить цифры друг под другом справа налево:
  1. Последовательно перемножаем значения разрядов. Результатом является неполное произведение.
  1. Далее перемножаем десятки. Первый множитель умножим на значение разряда десятков второго и т.д. Результат запишем под чертой.
  1. По аналогии действуем с сотыми. Ноль пропускаем в соответствии с правилом. Так получилось второе неполное произведение:
  1. Далее складываем два произведения в столбик. 
  1. Получившееся семизначное число — результат умножения исходных натуральных чисел.

Ответ: 8 063 * 207 = 1669041. 

Как учить ребенка учиться

Умеет ли ваш ребенок учиться? Уверена, что многих родителей этот вопрос поставил в тупик. А действительно, что значит «уметь учиться»? Когда ваш юный школьник только пошел в школу, после занятий, возможно, он бежал домой и очень хотел сразу же делать уроки. Так бывает, когда дети очень ждут поступления в 1 класс. Но со временем интересы к своевременному выполнению домашнего задания ослабевают и «домашка» становится скучным времяпровождением.

А ведь именно нежелание выполнять домашние задания, готовиться к школьным рефератам, семинарам и викторинам, становится основной причиной того, что ребенок вначале не хочет, а после и не умеет учиться. Пробелы в знаниях могут накапливаться словно снежный ком, снижая успеваемость школьника и убивая в нем желание учиться.

Чтобы школьник учился этой сложной и ответственной науке – учиться – родители должны всячески помогать ему: составить распорядок дня, учить ребенка выполнять домашнее задание наперед, прорешивать или прописывать дополнительные упражнения, чтобы тренировать и руку для письма, и мозг для устного счета. Математике дается детям начального звена сложнее всего, именно поэтому мы и подготовили для школьников 3 класса этот материал.

Основные понятия

Во всем мире принято использовать эти десять цифр для записи чисел: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. С их помощью создается любое натуральное число.

Название числа напрямую зависит от количества знаков.

  • Однозначное — состоит из одного знака
  • Двузначное — из двух
  • Трехзначное — из трех и так далее.

Разряд — это позиция, на которой стоит цифра в записи. Их принято отсчитываются с конца.

Разряд единиц — то, чем заканчивается любое число. Разряд десятков — то, что находится перед разрядом единиц. Разряд сотен стоит перед разрядом десятков. На место отсутствующего разряда всегда можно поставить ноль.

В числе 429 содержится 0 тысяч, 4 сотни, 2 десятка и 9 единиц.

Умножение — арифметическое действие в котором участвуют два аргумента. Один множимый, второй множитель. Результат их умножения называется произведением.

Свойства умножения

1. От перестановки множителей местами произведение не меняется.

a * b = b * a

2. Результат произведения трёх и более множителей не изменится, если любую группу заменить произведением.

a * b * c = (a * b) * c = a * (b * c)

Самое главное в процессе вычисления — это знание таблицы умножения. Это сделает подсчет упорядоченным и быстрым.

Важно помнить правило: умножение в столбик с нулями дает в результате ноль

а * 0 = 0, где а — любое натуральное число.

Алгоритм умножения в столбик

Чтобы понять, как умножать в столбик — рассмотрим действия по шагам:

1. Запишем пример в строку. Выберем и подчеркнем из двух чисел наименьшее, чтобы не забыть при новой записи поставить его вниз.

2. Записываем произведение в виде столбика. Сначала наибольший множитель, затем наименьший, тот что мы подчеркнули ранее. Слева ставим соответствующий знак и проводим черту под которой будем записывать ход решения

Важно обратить внимание разряды, чтобы единицы стояли стоять под единицами, десятки под десятками и т. д

3. Поэтапно производим необходимые действия. Каждую цифру первого множителя нужно умножить на крайнюю цифру второго. Это действие происходит справа налево: единицы, десятки, сотни.

Если результат получится двузначным, под чертой записывается только последняя его цифра. Остальное переносим в следующий разряд путем сложения со значением, полученным при следующем умножении.

4. После умножения на единицу второго множителя с остальными цифрами необходимо провести аналогичные манипуляции. Результаты записывать под чертой, сдвигаясь влево на одну позицию.

5. Складываем то, что нашли и получаем ответ.

Умножение на однозначное число

Для решения задачи по произведению двух натуральных чисел, одно из которых однозначное, а другое — многозначное, нужно использовать способ столбика. Для вычисления воспользуемся последовательностью шагов, которую рассмотрели выше. 

Возьмем пример 234 * 2:

1. Запишем первый множитель, а под ним второй. Соответствующие разряды расположены друг под другом. Двойка находится под четверкой.

2. Последовательно умножаем каждое число в первом множителе на второй, начиная с единиц и продвигаясь к десяткам и сотням.

3. Ответ запишем под чертой:

Производить действия необходимо в следующей последовательности:

Умножение двух многозначных чисел

Если оба множителя — многозначные натуральные числа, нужно действовать следующим образом.

Рассмотрим пример 207 * 8063:

  1. Сначала запишем наибольшее 8063, затем наименьшее 207. Нужно разместить цифры друг под другом справа налево:
  1. Последовательно перемножаем значения разрядов. Результатом является неполное произведение.
  1. Далее перемножаем десятки. Первый множитель умножим на значение разряда десятков второго и т.д. Результат запишем под чертой.
  1. По аналогии действуем с сотыми. Ноль пропускаем в соответствии с правилом. Так получилось второе неполное произведение:
  1. Далее складываем два произведения в столбик. 
  1. Получившееся семизначное число — результат умножения исходных натуральных чисел.

Ответ: 8 063 * 207 = 1669041. 

Примеры на умножение в столбик

Самостоятельное решение задачек помогает быстрее запомнить правила и натренировать скорость

Неважно, в каком классе учится ребенок — в 1, 3 или 4 — эти примеры подойдут всем

Повтори тему — деление в столбик, она очень полезная!

Сокращенная таблица умножения до 20

1 x 1 = 11 x 2 = 21 x 3 = 31 x 4 = 41 x 5 = 51 x 6 = 61 x 7 = 71 x 8 = 81 x 9 = 91 x 10 = 10 2 x 1 = 22 x 2 = 42 x 3 = 62 x 4 = 82 x 5 = 102 x 6 = 122 x 7 = 142 x 8 = 162 x 9 = 182 x 10 = 20 3 x 1 = 33 x 2 = 63 x 3 = 93 x 4 = 123 x 5 = 153 x 6 = 183 x 7 = 213 x 8 = 243 x 9 = 273 x 10 = 30 4 x 1 = 44 x 2 = 84 x 3 = 124 x 4 = 164 x 5 = 204 x 6 = 244 x 7 = 284 x 8 = 324 x 9 = 364 x 10 = 40 5 x 1 = 55 x 2 = 105 x 3 = 155 x 4 = 205 x 5 = 255 x 6 = 305 x 7 = 355 x 8 = 405 x 9 = 455 x 10 = 50
6 x 1 = 66 x 2 = 126 x 3 = 186 x 4 = 246 x 5 = 306 x 6 = 366 x 7 = 426 x 8 = 486 x 9 = 546 x 10 = 60 7 x 1 = 77 x 2 = 147 x 3 = 217 x 4 = 287 x 5 = 357 x 6 = 427 x 7 = 497 x 8 = 567 x 9 = 637 x 10 = 70 8 x 1 = 88 x 2 = 168 x 3 = 248 x 4 = 328 x 5 = 408 x 6 = 488 x 7 = 568 x 8 = 648 x 9 = 728 x 10 = 80 9 x 1 = 99 x 2 = 189 x 3 = 279 x 4 = 369 x 5 = 459 x 6 = 549 x 7 = 639 x 8 = 729 x 9 = 819 x 10 = 90 10 x 1 = 1010 x 2 = 2010 x 3 = 3010 x 4 = 4010 x 5 = 5010 x 6 = 6010 x 7 = 7010 x 8 = 8010 x 9 = 9010 x 10 = 100
11 x 1 = 1111 x 2 = 2211 x 3 = 3311 x 4 = 4411 x 5 = 5511 x 6 = 6611 x 7 = 7711 x 8 = 8811 x 9 = 9911 x 10 = 110 12 x 1 = 1212 x 2 = 2412 x 3 = 3612 x 4 = 4812 x 5 = 6012 x 6 = 7212 x 7 = 8412 x 8 = 9612 x 9 = 10812 x 10 = 120 13 x 1 = 1313 x 2 = 2613 x 3 = 3913 x 4 = 5213 x 5 = 6513 x 6 = 7813 x 7 = 9113 x 8 = 10413 x 9 = 11713 x 10 = 130 14 x 1 = 1414 x 2 = 2814 x 3 = 4214 x 4 = 5614 x 5 = 7014 x 6 = 8414 x 7 = 9814 x 8 = 11214 x 9 = 12614 x 10 = 140 15 x 1 = 1515 x 2 = 3015 x 3 = 4515 x 4 = 6015 x 5 = 7515 x 6 = 9015 x 7 = 10515 x 8 = 12015 x 9 = 13515 x 10 = 150
16 x 1 = 1616 x 2 = 3216 x 3 = 4816 x 4 = 6416 x 5 = 8016 x 6 = 9616 x 7 = 11216 x 8 = 12816 x 9 = 14416 x 10 = 160 17 x 1 = 1717 x 2 = 3417 x 3 = 5117 x 4 = 6817 x 5 = 8517 x 6 = 10217 x 7 = 11917 x 8 = 13617 x 9 = 15317 x 10 = 170 18 x 1 = 1818 x 2 = 3618 x 3 = 5418 x 4 = 7218 x 5 = 9018 x 6 = 10818 x 7 = 12618 x 8 = 14418 x 9 = 16218 x 10 = 180 19 x 1 = 1919 x 2 = 3819 x 3 = 5719 x 4 = 7619 x 5 = 9519 x 6 = 11419 x 7 = 13319 x 8 = 15219 x 9 = 17119 x 10 = 190 20 x 1 = 2020 x 2 = 4020 x 3 = 6020 x 4 = 8020 x 5 = 10020 x 6 = 12020 x 7 = 14020 x 8 = 16020 x 9 = 18020 x 10 = 200

Умножение многозначного числа на однозначное

Чтобы умножить многозначное число на однозначное, надо умножить каждую цифру многозначного числа на это однозначное число. Например, найдем значение выражения 12 × 3. Записываем данное выражение в столбик, при этом единицы должны быть под единицами. Всё это соединяется знаком умножения ( × )

Далее каждая цифра многозначного числа умножается на 3. Умножать начинаем с разряда единиц, то есть с цифры 2. Два умножить на три будет шесть. Записываем цифру 6 в разряде единиц нашего ответа:

Теперь умножаем 1 на 3, получаем 3. Записываем цифру 3 в разряде десятков нашего ответа:

Получили ответ 36.

В данном примере множимым было число 12, а множителем число 3. Число 12 это две единицы и один десяток. Наша задача заключалась в том, чтобы увеличить эти две единицы и один десяток в 3 раза. Тогда решая этот пример, можно было бы рассуждать следующим образом:

Увеличим две единицы в 3 раза: 2 × 3 = 6. Получили шесть единиц. Записываем цифру 6 в разряде единиц нового числа

Увеличим один десяток в 3 раза: 1 × 3 = 3. Получили три десятка. Записываем цифру 3 в разряде десятков нового числа:

Иногда при умножении одной цифры многозначного числа на однозначное число получается многозначное число. В этом случае сначала записывается одна цифра из разряда единиц, а остальные цифры переносятся на следующий разряд, к которому они будут добавлены после вычисления.

Например, найдем значение выражения 23 × 6

Умножаем каждую цифру числа 23 на 6. Начинаем с тройки: 3 × 6 = 18. Восемнадцать не вмещается в разряд единиц нашего ответа, поэтому сначала записывается 8, а 1 переносится на следующий разряд. Эта единица будет прибавлена к результату умножения 2 на 6

Теперь умножаем 2 на 6, получаем 12, плюс единица, которая досталась от предыдущего умножения. На рисунке эта единица выделена синим цветом. Вычисляем (2 × 6) + 1 = 13

Получили ответ 138. В данном примере множимым было число 23, а множителем число 6. Число 23 это три единицы и два десятка. Наша задача заключалась в том, чтобы увеличить эти три единицы и два десятка в 6 раз. Тогда решая этот пример, можно было бы рассуждать следующим образом:

Увеличим три единицы в 6 раз: 3 × 6 = 18. Получили восемнадцать единиц. Произошло переполнение разряда в разряде единиц. Число 18 это 8 единиц и 1 десяток. 8 единиц записываем в разряде единиц нового числа, а 1 десяток отправляем к разряду десятков. Этот десяток мы прибавим, когда увеличим два десятка в шесть раз:

Увеличим два десятка в 6 раз: 2 × 6 = 12. Получили двенадцать десятков. Плюс прибавляем один десяток, который остался от числа 18.

12 десятков плюс 1 десяток будет 13 десятков. Записываем число 13 в разряде десятков нового числа, образуя окончательный ответ:

Пример 3. Найти значение выражения 326 × 5

Записываем в столбик данное выражение:

Умножаем каждую цифру числа 326 на 5. Начинаем с шестёрки: 6 × 5 = 30. Число 30 не вмещается в разряд единиц нашего ответа, поэтому сначала записываем 0, а тройку переносим на следующий разряд:

Теперь умножаем 2 на 5, получаем 10 плюс тройка, которая досталась от предыдущей операции: (2 × 5) + 3 = 13. Получили число 13, которое не вмещается в разряд десятков нашего ответа. Поэтому записываем сначала 3, а единицу переносим на следующий разряд:

Теперь умножаем последнюю тройку на 5, плюс прибавляем единицу, которая досталась от предыдущей операции: (3 × 5) + 1 = 16. Получили 16. Записываем это число целиком, образуя окончательный ответ:

Умножение на 10, 100, 1000

Чтобы умножить любое число на 10,  100 или 1000, достаточно дописáть к множимому количество нулей из множителя.

Например, чтобы умножить 12 на 10, нужно к множимому 12 дописать в конце ноль из множителя 10. В результате получим ответ 120

Еще примеры:

12 × 100 = 1200 (к 12 дописали два нуля, поскольку в числе 100 два нуля)

12 × 1000 = 12000 (к 12 дописали три нуля, поскольку в числе 1000 три нуля)

15 × 100 = 1500 (к 15 дописали два нуля, поскольку в числе 100 два нуля)

320 × 100 = 32000 (к 320 дописали два нуля, поскольку в 100 два нуля)

Если нулём оканчивается не множитель, а множимое, то для получения ответа нужно дописать ноль после множителя.

Например, чтобы умножить 10 на 12, нужно в ответе записать множитель 12 и дописать в конце один ноль:

10 × 12 = 120

С чего начать изучение таблицы умножения?

Первый этап подготовки выполните сами – распечатайте таблицу Пифагора и таблицу с примерами

И вот тут важно обратить внимание, что это не одно то же. Во втором случае это просто примеры с готовыми ответами, представленные в столбиках для каждой цифры. Первый вариант и является настоящей таблицей умножения (Пифагора), которая представлена сеткой 10х10

Это отличный способ, как легко запомнить таблицу умножения

Первый вариант и является настоящей таблицей умножения (Пифагора), которая представлена сеткой 10х10. Это отличный способ, как легко запомнить таблицу умножения.

Прежде чем выучить наизусть всю таблицу умножения ребенку, покажите ему, что цифры, которые перемножаются, находятся слева и сверху, а если пальчиками от них провести навстречу друг другу, то на пересечении будет результат их перемножения.

Задаваясь вопросом, как быстро выучить таблицу умножения ребенку, и с чего начать этот процесс, то знакомить его с самими действиями нужно, начиная с тех манипуляций с умножением, которые ему понять и выполнить самостоятельно будет проще всего:

  • На «1». Любое действие в этом случае дает результат, при котором число остается прежним. Так школьнику будет проще понимать, что это за процесс. Предложите ему попрактиковаться с умножением на один несколько раз с разными числами;
  • На «10». Объясните ребенку, что, несмотря на то что это большое число, умножать на него очень просто. Нужно лишь к умножаемому приписывать ноль. Начните с небольших значений – например, 3х10, а потом предложите ему самостоятельно попробовать выполнить действия с большими числами.

На пути к тому, как научить быстро выучить таблицу умножения ребенка, это важные шаги. Теперь он знает, как работать с крайними значениями сетки Пифагора. Помимо практического значения, для него это играет и психологическую роль:

  • у школьника сложится понятие того, как нужно работать с ней;
  • он поймет, что начало положено, и ему знакомиться с сеткой не сложно, даже интересно, поэтому полностью ее освоить он сможет.

Если ученик еще не устал, можно приступать к следующему этапу того, как можно быстро выучить таблицу умножения:

предложите школьнику умножать на «2». Уже с первых классов обучения математике дети знают, как выполнять сложение до 10, в том числе одинаковых чисел. Поэтому занятие будет для обучаемого простым и даже интересным;
перемена мест множителей

Это важное правило, часто непонятное детям, заключающееся в том, что при перестановке множителей их произведение остается прежним. Обязательно покажите это на самой сетке в соответствующих графах

Благодаря этому ребенку проще будет запомнить это правило, называемое коммутативным или переместительным. К тому же, так он быстрее запомнит определенные действия умножения и их произведения.

Это первые шаги, применяя которые вы положите начало запоминанию и к тому, чтобы быстро и просто потом выучить действия и результаты, указанные в сетке.

как выучить таблицу умножения

Подготовка к изучению таблицы умножения

Этот этап является в том числе организационным, но он входит в алгоритм того, как легко выучить таблицу умножения и сделать это быстро. Подготовка включает в себя такие шаги:

  • подберите время, когда вы ежедневно будете заниматься с ребенком. Учитывайте, что на изучение нужно уделять не менее 30 минут (это длительность одного занятия). Поэтому в это время ученик не должен быть уставшим, но должен быть готов к эффективному обучению;
  • приготовьтесь к тому, что процесс этот должен включать игровой момент, потому что игра – легкий способ выучить таблицу умножения;
  • саму сетку или столбики с примерами вы можете распечатать, а можете расчертить самостоятельно;
  • продумайте, как и когда, в какое время вы будете проверять выученный материал.

Итоги

  • Таблицу умножения надо обязательно освоить в начальной школе. Но это не значит, что ребенка нужно заставлять бездумно зубрить решения разных примеров, лучше использовать техники запоминания и осмысления;
  • Покажите школьнику, что у математики есть вполне реальная польза. Например, поручите ему считать, сколько нужно купить килограмм корма для питомца, сколько тетрадок на парте у него и у соседа и так далее;
  • Не торопите ребенка и не заставляйте его учить все за один вечер.
  • Превращайте процесс обучения в игру. Это совсем не сложно, даже если лично у вас мало времени.
  • Поощряйте сына или дочь за успехи. Хвалите ребенка, можно создать систему небольших призов за успех в изучении или победу в математических играх.
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector